👌Когда метод опорных векторов (SVM) может превосходить глубокую нейросеть на практике
SVM может показывать лучшие результаты, когда объём данных небольшой, но признаковое пространство — высокоразмерное и хорошо различающее. Особенно это актуально в узкоспециализированных задачах, где трудно собрать большие размеченные выборки (например, в медицине или биоинформатике).
Если удаётся подобрать подходящую ядровую функцию, SVM может эффективно аппроксимировать сложные границы между классами без необходимости обучения миллионов параметров, как в нейросетях.
⚠️На что стоит обратить внимание: — Глубокие нейросети склонны к переобучению на малых данных. Без правильной настройки регуляризации и архитектуры они могут хуже обобщать, чем более простые модели. — Нейросетям часто нужны хорошие инициализации весов, продвинутые оптимизаторы и большие вычислительные ресурсы. При неправильной конфигурации они могут проигрывать по скорости и стабильности SVM. — SVM проще интерпретировать и отлаживать в задачах с ограниченными ресурсами или когда важна воспроизводимость.
📌Вывод: Если данных мало, но признаки хорошо различают классы — не стоит сразу переходить к нейросетям. Грамотно настроенный SVM может быть не только быстрее, но и точнее.
👌Когда метод опорных векторов (SVM) может превосходить глубокую нейросеть на практике
SVM может показывать лучшие результаты, когда объём данных небольшой, но признаковое пространство — высокоразмерное и хорошо различающее. Особенно это актуально в узкоспециализированных задачах, где трудно собрать большие размеченные выборки (например, в медицине или биоинформатике).
Если удаётся подобрать подходящую ядровую функцию, SVM может эффективно аппроксимировать сложные границы между классами без необходимости обучения миллионов параметров, как в нейросетях.
⚠️На что стоит обратить внимание: — Глубокие нейросети склонны к переобучению на малых данных. Без правильной настройки регуляризации и архитектуры они могут хуже обобщать, чем более простые модели. — Нейросетям часто нужны хорошие инициализации весов, продвинутые оптимизаторы и большие вычислительные ресурсы. При неправильной конфигурации они могут проигрывать по скорости и стабильности SVM. — SVM проще интерпретировать и отлаживать в задачах с ограниченными ресурсами или когда важна воспроизводимость.
📌Вывод: Если данных мало, но признаки хорошо различают классы — не стоит сразу переходить к нейросетям. Грамотно настроенный SVM может быть не только быстрее, но и точнее.
Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from de